
On the Evaluation of Outlier Detection and

One-Class Classification: A Comparative

Study of Algorithms, Model Selection, and

Ensembles [Supplementary Material]

Henrique O. Marques1*, Lorne Swersky2, Jörg
Sander2, Ricardo J. G. B. Campello3 and Arthur Zimek1

1University of Southern Denmark, Denmark.
2University of Alberta, Canada.

3University of Newcastle, Australia.

*Corresponding author(s). E-mail(s): oli@sdu.dk;
Contributing authors: jsander@ualberta.ca;

ricardo.campello@newcastle.edu.au; zimek@imada.sdu.dk;

1 Methods and their Properties

1.1 Description of the Methods

Gaussian Mixture Model (GMM)

The most widely used parametric model is the Gaussian distribution (Bishop,
2007), where, in the most simple case, a single Gaussian probability density
function,

pGauss(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−µ)TΣ−1(x−µ), (1)

is fit to the inlier data, with µ being the mean, Σ being the covariance matrix,
and d being the dimensionality of the data. Using a single Gaussian distribu-
tion, however, makes a very strong assumption about the distribution being
unimodal, which is often violated.

1

2 On the Evaluation of Outlier Detection and One-Class Classification

A more flexible model is a Gaussian Mixture Model (GMM) (Bishop,
2007), where the distribution is assumed to be the result of a mixture of
different Gaussian distributions. The means µi and covariances Σi of the indi-
vidual Gaussian components can efficiently be estimated by an Expectation-
Minimization (EM) algorithm (Dempster et al, 1977). Aside from the inherited
disadvantages of parametric methods, the main disadvantages of the Gaussian
density are related to the covariance matrix. For high dimensional data, this
model suffers from very large covariance matrices, which makes it expensive
to compute its inverse. In case the inverse of the covariance matrix cannot
be calculated (e.g. data with singular directions), it has to be approximated,
for example, by adding a small constant ϵ to the diagonal, or alternatively,
approximated by its pseudo-inverse (Strang, 2016).

Parzen Window (PW)

PW is a non-parametric method based on Parzen Density Estimation (Parzen,
1962) that estimates the density of the data using a mixture of kernels centered
on each of the N individual training instances. In our study, we use Gaus-
sian kernels with diagonal covariance matrices Σi = hI, where h is a width
parameter. The probability of an instance being an inlier is then computed as:

PW(x) =
1

N

N∑
i=1

pGauss(x|xi, hI) (2)

The training for the Parzen density consists of the determination of the
parameter h, which can be optimized using the maximum likelihood solution
(Duin, 1976). Alternatively, the user can supply the parameter h. In the latter
case, the computational cost for training is negligible. Testing new instances,
however, is computationally expensive. During the testing phase, the distances
of the new instance to the training instances have to be computed, which also
imposes a storage limitation, since the training instances have to be stored and
typically large training sets are required to produce a good density estimation.

Support Vector Data Description (SVDD)

SVDD (Tax and Duin, 2004) is a boundary-based one-class classification
method inspired by Support Vector Machines (SVM) (Vapni, 1995) used in
regular classification problems. The primary difference between SVDD and
SVM is that while an SVM attempts to separate two or more classes with a
maximum margin hyperplane, SVDD instead will enclose the inlier class in a
minimum volume hypersphere by minimizing the following error:

E(R,a, ξ) = R2 + C
∑
i

ξi, (3)

subject to the constraints:

On the Evaluation of Outlier Detection and One-Class Classification 3

∥xi − a∥2 ≤ R2 + ξi, ξi ≥ 0, ∀i, (4)

where R is the radius of the hypersphere, a is the center of the hypersphere, ξ
are slack variables allowing training observations x to fall outside the SVDD
boundary, and C is a penalty (regularization) parameter.

Like traditional SVMs, the above formulation can also be extended to non-
linearly transformed spaces using kernel methods. In the case of a kernel with
the property K(xi,xi) = 1, ∀i, such as the Gaussian kernel that we use in
our experiments, OC-SVM (Schölkopf et al, 2001) and SVDD (Tax and Duin,
2004) find the same decision boundary when some conditions are met (Tax
and Duin, 2004; Schölkopf et al, 2001; Tax, 2001).

Linear Programming (LP)

LP (Pekalska et al, 2002) is a boundary method which, instead of using the
explicit feature space, utilizes a dissimilarity measure to compare new instances
to the inlier instances in the training set. The basic assumption is that instances
belonging to the inlier class are similar to each other, while the outliers are
dissimilar to inliers. The use of a dissimilarity measure makes the method
very convenient for applications where it is difficult to define suitable features
for other approaches, as e.g. in unstructured data (strings, graphs or shapes).
The dissimilarity measure used must meet the criteria defined by the authors:
reflectivity, positivity, and symmetry. LP constructs the boundary by mini-
mizing the volume of a simplex (Bazaraa et al, 2009) with the main vertex
being the origin and the other vertices resulting from the intersection of the
boundary and the axes of the dissimilarity space.

For unbounded dissimilarity measures, instances with large dissimilarities
values (due to noise or the existence of outliers in the training data) may
affect the decision boundary. In order to make the classifier robust against such
values, the dissimilarities are transformed by the sigmoid function, sigm(x) =

2
1+ex/s , such that large values are bounded by 1. In this case, the user has to
define the parameter s for the slope of the sigmoid function.

k-Nearest Neighbor Data Description (kNNlocal)

The k-nearest Neighbor Data Description approach (de Ridder et al, 1998),
which we call here kNNlocal, avoids explicit density estimations by only using
the distances to the nearest neighbors. It resembles local outlier detection
methods in that it approximates the local (normalized) distance of the training
instances, however in a simpler way. An observation is classified under kNNlocal

by computing the ratio between the distance from an observation to its kth

nearest neighbor NNk(xi), and the distance between the kth nearest neighbor
and that neighbor’s kth nearest neighbor:

kNNlocal(xi, k) =
d(xi,NNk(xi))

d(NNk(xi),NNk(NNk(xi)))
(5)

4 On the Evaluation of Outlier Detection and One-Class Classification

kNNlocal has the same computational issues when testing new instances as
PW. However, according to Tax (2001) the method performs best in small
sample size, where overall computational efforts are low. For larger sample
sizes and noisy data, reported quality of results is rather poor (Tax, 2001).

Auto-Encoder Networks

An Auto-Encoder (Japkowicz et al, 1995; Tax, 2001) is a neural network with
a sigmoidal transfer function, a single hidden layer, and a parameter-defined
number of hidden units trained on the inlier class. The network is trained to
reproduce the input patterns at its output layer (i.e., it should perform the
identity operation) by minimizing the Mean Square Error (MSE). In order
to classify a new instance, the instance is given as input to the network and
the difference between the original input and the network’s output defines the
reconstruction error.

An Auto-Encoder can learn very flexible models. However, it suffers from
the same problems as the conventional neural networks for classification prob-
lems, such as the high number of parameters to tune (learning rate, number
of neurons, number of layers, number of epochs, etc), local minimum, weight
initialization, etc. (Freeman and Skapura, 1991; Goodfellow et al, 2016).

Deep SVDD

Deep SVDD (Ruff et al, 2018) is an end-to-end deep learning approach for one-
class classification which jointly trains a deep neural network while optimizing
a data-enclosing hypersphere of the smallest size in output space. In contrast
to kernel-based SVDD, Deep SVDD learns useful feature representations of the
data together with the one-class classification objective by employing a neural
network that is jointly trained to map the data into a hypersphere of minimum
volume. The Deep SVDD minimizes the following objective function:

1

N

N∑
i=1

∥ϕ(xi,W)− c∥2 + δ

2

∑
j=1

∥W j∥2, δ > 0, (6)

where ϕ is the neural network with the corresponding set of weights W trained
to learn a transformation that minimizes the volume of a data-enclosing hyper-
sphere centered on a predetermined point c. The second term is a standard
weight decay regularizer.

Local Outlier Factor (LOF)

LOF (Breunig et al, 2000) is an unsupervised outlier detection method that,
similarly to kNNlocal, compares the local density of an observation to that of
its neighbors. The distances between observations are replaced by reachability
distances, defined as:

reach-distk(xi ← xj) = max{d(xj ,NNk(xj)), d(xi,xj)} (7)

On the Evaluation of Outlier Detection and One-Class Classification 5

The local reachability density of an observation xi is then defined as the
inverse average reachability distance from the set of xi’s neighbors, kNN(xi),
that are within the k nearest neighbor distance around xi:

lrdk(xi) =
| kNN(xi)|∑

xj∈kNN(xi)
reach-distk(xi ← xj)

(8)

Finally, the LOF score of an observation is computed by comparing the lrd
of the observation with that of its neighbors:

LOFk(xi) =

∑
xj∈kNN(xi)

lrdk(xj)
lrdk(xi)

| kNN(xi)|
(9)

Local Correlation Integral (LOCI)

LOCI (Papadimitriou et al, 2003) is an unsupervised outlier detection method
which analyzes the density of an observation at multiple neighborhood radii
φr of a given maximum radius r, where φ ∈ (0, 1]. For each observation xi,
a (local) r-neighborhood N (xi, r) = {x|d(xi,x) ≤ r} and a (local) r-density
n(xi, r) = |N (xi, r)| are defined.

The average φr-density inside an r-neighborhood around an observation
xi is then defined as:

n̂(xi, r, φ) =

∑
xj∈N (xi,r)

n(xj , φr)

n(xi, r)
, (10)

and the multi-granularity deviation factor (MDEF) is given by:

MDEF(xi, r, φ) = 1− n(xi, φr)

n̂(xi, r, φ)
(11)

An observation xi is classified using the following score:

σMDEF(xi, r, φ) =
σn̂(xi, r, φ)

n̂(xi, r, φ)
, (12)

which is the normalized standard deviation σn̂(xi, r, φ) of n(xi, φr) for xi ∈
N (xi, r). With these quantities, the LOCI score is computed as follows:

LOCI(xi, φ) = max
r∈R

{
MDEF(xi, r, φ)

σMDEF(xi, r, φ)

}
(13)

k-Nearest Neighbor (kNNglobal)

The k-Nearest Neighbor approach, which we call here kNNglobal, has been orig-
inally introduced as an unsupervised distance-based outlier detection method
(Ramaswamy et al, 2000). Its score is the numerator of Equation (5):

kNNglobal(xi, k) = d(xi,NNk(xi)), (14)

which makes the score global rather than local.

6 On the Evaluation of Outlier Detection and One-Class Classification

Angle-Based Outlier Detection (ABOD)

ABOD (Kriegel et al, 2008) is a global outlier detection algorithm which uses
not only the distances between points but primarily the variance of the angles
between points. ABOD computes the variance of the angles between point xi

and all other pairs of points in the dataset X, weighted by the inverse of the
distances to the respective points. This weighting factor is important since
the angle to a pair of points varies naturally more for larger distances. The
Angle-Based Outlier Factor (ABOF) is defined as follows:

ABOF(xi) = VARxj ,xk∈Xtrain

(
⟨xi − xj ,xi − xk⟩

∥xi − xj∥2 · ∥xi − xk∥2

)
(15)

Subspace Outlier Degree (SOD)

SOD (Kriegel et al, 2009) analyzes for each object how well it fits into the
subspace that is spanned by a set of reference objects. In order to define the
reference set, the authors suggest using Shared Nearest Neighbors (SNN) in
the full space. Once this reference set has been defined, the relevant subspace
is determined as the set of attributes in which the variance of the objects of
the reference set to its center is small compared to the expected variance. The
outlier scoring of SOD is computed as the Euclidean distance of an object
to the center of the reference set in the relevant subspace, normalized by the
number of relevant attributes.

Global-Local Outlier Scores from Hierarchies (GLOSH)

GLOSH (Campello et al, 2015) is an unsupervised outlier detection algorithm
based on the hierarchical density estimates provided by the hierarchical clus-
tering algorithm HDBSCAN*. After a density-based clustering hierarchy is
computed for the whole dataset, the GLOSH score for each observation xi can
be computed based on the difference in density around xi and the highest den-
sity inside the cluster closest to xi (from a density-connectivity perspective)
in the HDBSCAN* hierarchy, defined as follows:

GLOSH(xi) =
λmax(Cxi

)− λ(xi)

λmax(Cxi)
, (16)

where λ(xi) is the density of xi and λmax(Cxi
) is the highest density of an

observation inside the closest cluster Cxi
, where densities are estimated by a

k-nearest neighbor density estimator. The closest cluster Cxi
is the one that

xi belongs to at the density level of xi.
To apply GLOSH in a one-class classification scenario, we can construct

initially the HDBSCAN* hierarchy using the training data, and then use this
hierarchy as a fixed “model” to compute outlier scores for unseen data. In
order to classify a new instance xi, we must determine which is the closest
cluster Cxi

in the fixed hierarchy. This can be achieved by first adding a
given instance xi to the Minimum Spanning Tree (MST) which underlies the

On the Evaluation of Outlier Detection and One-Class Classification 7

HDBSCAN* hierarchy; xi is connected to the training instance xj with the
smallest “distance” in the density space in which the MST is constructed. We
can find the closest cluster Cxi for an instance xi by removing the edges of the
MST in decreasing order of weight. The closest cluster Cxi is the one that xi

belongs before being detached from the MST.
There are two situations that may occur when connecting the new instance

xi to the training instance xj . The first situation is that the edge connecting
xi and xj is removed before xj is separated from the MST. In this case, the
closest cluster to xi will be the cluster that xj belongs to when xi is detached.
We show an example of this situation in Figure 1.

x1

x2
x3

x4

x5x6

x7

x8

x9

xi

2.97

4.01

1

(a)

x1

x2
x3

x4

x5x6

x7

x8

x9

xi

1

(b)

Fig. 1: MST which underlies the HDBSCAN* hierarchy in the density space
with minimum cluster size (mclSize) = 3. The new instance xi is connected
to the training instance with the smallest distance x5 (Figure 1(a)). The edge
connecting xi and x5 is removed before x5 is separated from the MST and so
the closest cluster to xi is the one x5 is assigned at this density level. In this
case, it is the cluster where all instances remain clustered (Figure 1(b))

The second situation is that xj is separated from the MST before the edge
between xi and xj is removed. In this case, the closest cluster for xi is the
same as the closest cluster for xj . For this situation, we show an example in
Figure 2.

Once we have identified the closest cluster for xi, we can compute its
GLOSH score using Equation (16).

Isolation Forest (iForest)

iForest (Liu et al, 2008, 2012) is an unsupervised outlier detection algorithm
based on the concept of isolation which can be seen as a particular kind of
density estimate. The concept of isolation in this context means “separating
an instance from the rest of the instances”, which is achieved by building an
ensemble of binary trees called isolation trees (iTree). An iTree recursively
divides a dataset by randomly selecting an attribute and a split value until
either the resulting partitions/nodes have only one instance or all instances in
a partition/node have the same value. Anomalies are more likely to be isolated

8 On the Evaluation of Outlier Detection and One-Class Classification

x1

x2
x3

x4

x5x6

x7

x8

x9

xi
2.97

2.01

1

(a)

x1

x2
x3

x4

x5x6

x7

x8

x9

xi

1

(b)

x1

x2
x3

x4

x5x6

x7

x8

x9

xi

1

(c)

Fig. 2: MST which underlies the HDBSCAN* hierarchy in the density space
with minimum cluster size (mclSize) = 3. The new instance xi is connected
to the training instance with the smallest distance x5 (Figure 2(a)). The edge
connecting x5 is separated from the MST before the edge between xi and x5

(Figure 2(c)) and so the closest cluster to xi is the closest cluster for x5. In
this case, it is the cluster with the instances x4, x5 and x6 (Figure 2(b))

closer to the root of an iTree, whereas normal instances are more likely to be
isolated at deeper levels of an iTree. Therefore, anomalies are those instances
that have short average path lengths in the iTrees.

1.2 Time Complexity

The computational complexity of the one-class classification algorithms can
be analyzed for the two different sub-tasks: the training time O(ftr (N)) and
the testing (or consultation) time O(fte(M)), as a function of the training set
size (N) and the test set size (M), respectively. In general, the algorithms can
be divided into two groups, eager learning and lazy learning (Webb, 2011). In
regular classification problems, the majority of computation of eager learning
algorithms occurs at training time, while lazy learning algorithms spend more
time when testing. In one-class classification, however, if one wants to deter-
mine the threshold to separate inliers from outliers when using lazy learning
algorithms, the model should also be applied to the training data (for exam-
ple, as discussed in section 3.3), which can result in higher complexity in the
training time than in the testing when N > M . On the other hand, if one is
not interested in labeling, but only in the ranking, the complexity for training
time is usually null1. Another disadvantage of lazy learning algorithms is the
fact that the training data has to be stored for consultation during the testing
phase, which also imposes a storage restriction.

In Table 1, we provide the complexity of the methods discussed here. For
networks such as Auto-encoder and Deep SVDD, the training time complexity
depends on the training algorithm used, but it is usually linear in the training
set size (N) per each training iteration. Some algorithms, such as the Stochastic
Gradient Descent (SGD) methods (Goodfellow et al, 2016), can perform the

1For some methods, we still have to apply the model in the training data anyway, for example,
for LOF adapted to OCC, we still have to pre-compute the required quantities.

http://www.overleaf.com

On the Evaluation of Outlier Detection and One-Class Classification 9

Table 1: Time Complexity of Methods.
N : training set size, M : test set size, d: dataset dimensionality, t: method
parameter. *per iteration

Training time O(ftr (N)) Testing time O(fte(M))

Auto Enc. O(N(t+ d+ 2dt))∗ O(dM)
DSVDD O(t)∗ O(dM)
GMM O(d3Nt+ d2Nt) O(d3Mt)
iForest O(t21t2) O(Mt1)
LP O(dN3) O(dM)
SVDD O(dN3) O(dM)

ABOD O(dN3) O(dMN2)
GLOSH O(dN2) O(dMN)
kNNglobal O(dN2) O(dMN)
kNNlocal O(dN2) O(dMN)
LOCI O(dN3) O(dMN2)
LOF O(dN2) O(dMN)
PW O(dN2) O(dMN)
SOD O(dN2) O(dMN)

iteration in time complexity less than N , by using only a sample of the training
data to compute an unbiased estimate of the gradient. Most deep learning
methods, such as Deep SVDD, use SGD to alleviate the computational burden
caused by deep number of layers/neurons. The bottleneck in the training of a
neural network is usually on the number of weights to train. While for Deep
SVDD, there is no predetermined number of weights, for Auto-encoder, the
number of weights is equal to (t + d + 2dt), where d is the dimensionality
of the dataset, and t is the user-defined number of neurons. Therefore, the
use of Auto-encoder for high-dimensional datasets can be expensive. The time
complexity in the number of weights also depends on the training algorithm
to be used, for example, in the case of Conjugate Gradient, it is linear, while
for Levenberg-Marquardt, it is cubic (LeCun et al, 1998). The convergence
for Levenberg-Marquardt, however, is usually much faster, but the high time
complexity makes it suitable only for small network sizes. Note that, although
the time complexity per iteration for Deep SVDD (O(#weights)) is smaller
when compared to autoencoder (O(N × #weights)) due to the SGD, the
number of iterations required for the convergence of the autoencoder is smaller
(Goodfellow et al, 2016). Also, usually the number of weights of the Deep
SVDD ≫ number of weights of the autoencoder.

The training for GMMs consists of finding the distribution parameters of
the Gaussians (covariance matrices and means). It is usually achieved using
an Expectation-Maximization (EM) algorithm. For each iteration of the EM
algorithm, the E-step takes O(d3Nt) and the M-step takes O(d2Nt), where d
is the dimensionality of the dataset, and t is the user-defined number of clus-
ters. Noticing that, due to the inversion of the covariance matrix (O(d3)), this

10 On the Evaluation of Outlier Detection and One-Class Classification

algorithm is expensive for high-dimensional datasets. For testing, the compu-
tation of the likelihood of each testing point belonging to the clusters takes
O(d3Mt).

The training time complexity for iForest uses only a user-defined sampling
t1 of the dataset to build the iTrees. The time complexity to build each of the t2
iTrees defined by the user is quadratic in t1, which gives an overall complexity
for training equal to O(t21t2) . The structure of the iTrees is equivalent to that
of Binary Search Trees (BST), which makes the expected time complexity for
testing a new instance O(log t1), but the worst-case is O(t1).

Both LP and SVDD have to solve an optimization problem during the
training phase. While LP has to solve a linear programming (LP) problem,
SVDD has to solve a quadratic programming (QP) problem. Both problems
can be solved in polynomial time (O(N3)) using, for example, Interior Point
Methods (Woodsend, 2009; Campbell and Bennett, 2000). When using a lin-
ear kernel, however, some algorithms in the literature can solve the problem
efficiently in linear time (Joachims, 2006; Erfani et al, 2015).

For ABOD, the time complexity relies on the computation of the angles
between each point and all other pairs of points in the dataset, which makes the
overall time complexity for training O(N3) and testing O(MN2). Similarly,
the time complexity for LOCI relies on the computation of the MDEF for
each observation. When considering all possible radii r, it also takes O(N3)
for training and O(MN2) for testing.

For kNNglobal, kNNlocal, LOF, and SOD the most expensive operation is the
computation of the k nearest neighbors for all N observations. Without using
any spatial index structures, this computation takes O(N2). However, with the
use of spatial index structures, such as k-d trees and R-trees (Friedman et al,
1977; Roussopoulos et al, 1995), the k nearest neighbors for all N observations
can in practice often be determined much faster. For testing new instances,
we have to compute the k nearest neighbors of these instances to all instances
of the training set (O(MN)). Similarly to k-nearest neighbor-based classifiers,
the PW needs to compute the distance to all the observations in the training
set in order to estimate the densities. Therefore, the PW time complexity is
the same as that of the k-nearest neighbor-based methods.

The training phase of GLOSH consists of building the HDBSCAN* hier-
archy. The two most expensive operations are the computation of the core
distance, which involves computing the k nearest neighbors for all N obser-
vations (O(N2)), and the construction of the MST (O(N2)). Therefore, the
overall time complexity for training is O(N2). For testing, GLOSH has to
compute the core distance for each testing point (O(MN)), and find their
respective closest objects in the MST (O(MN)). In total, the testing time
complexity is O(MN).

On the Evaluation of Outlier Detection and One-Class Classification 11

References

Bazaraa MS, Jarvis JJ, Sherali HD (2009) Linear Programming and Network
Flows, 4th edn. Wiley-Interscience

Bishop CM (2007) Pattern Recognition and Machine Learning, 5th edn.
Springer

Breunig MM, Kriegel H, Ng RT, et al (2000) LOF: identifying density-based
local outliers. In: Proceedings of the 2000 SIGMOD International Conference
on Management of Data. ACM, pp 93–104, https://doi.org/10.1145/342009.
335388

Campbell C, Bennett KP (2000) A linear programming approach to novelty
detection. In: Proceedings of the 13th NIPS International Conference on
Neural Information Processing Systems. MIT Press, pp 395–401

Campello RJGB, Moulavi D, Zimek A, et al (2015) Hierarchical density esti-
mates for data clustering, visualization, and outlier detection. ACM Trans
Knowl Discov Data 10(1):5:1–5:51. https://doi.org/10.1145/2733381

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society
39(1):1–38

Duin RPW (1976) On the choice of smoothing parameters for parzen estima-
tors of probability density functions. IEEE Trans Computers 25(11):1175–
1179. https://doi.org/10.1109/TC.1976.1674577

Erfani SM, Baktashmotlagh M, Rajasegarar S, et al (2015) R1SVM: A
randomised nonlinear approach to large-scale anomaly detection. In: Pro-
ceedings of the 29th AAAI Conference on Artificial Intelligence. AAAI Press,
pp 432–438

Freeman JA, Skapura DM (1991) Neural Networks - Algorithms, Applications,
and Programming Techniques. Addison-Wesley

Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best
matches in logarithmic expected time. ACMTrans Math Softw 3(3):209–226.
https://doi.org/10.1145/355744.355745

Goodfellow IJ, Bengio Y, Courville AC (2016) Deep Learning. MIT Press

Japkowicz N, Myers C, Gluck MA (1995) A novelty detection approach to clas-
sification. In: Proceedings of the 4th IJCAI International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, pp 518–523

https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/2733381
https://doi.org/10.1109/TC.1976.1674577
https://doi.org/10.1145/355744.355745

12 On the Evaluation of Outlier Detection and One-Class Classification

Joachims T (2006) Training linear SVMs in linear time. In: Proceedings of the
12th SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, pp 217–226, https://doi.org/10.1145/1150402.1150429

Kriegel H, Schubert M, Zimek A (2008) Angle-based outlier detection in
high-dimensional data. In: Proceedings of the 14th SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, pp 444–452,
https://doi.org/10.1145/1401890.1401946

Kriegel H, Kröger P, Schubert E, et al (2009) Outlier detection in axis-parallel
subspaces of high dimensional data. In: Proceedings of the 13th PAKDD
Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,
pp 831–838, https://doi.org/10.1007/978-3-642-01307-2 86

LeCun Y, Bottou L, Orr GB, et al (1998) Efficient BackProp. In: Montavon
G, Orr GB, Müller K (eds) Neural Networks: Tricks of the Trade. Springer,
p 9–50, https://doi.org/10.1007/3-540-49430-8 2

Liu FT, Ting KM, Zhou Z (2008) Isolation forest. In: Proceedings of the 8th
ICDM International Conference on Data Mining. IEEE Computer Society,
pp 413–422, https://doi.org/10.1109/ICDM.2008.17

Liu FT, Ting KM, Zhou Z (2012) Isolation-based anomaly detection. ACM
Trans Knowl Discov Data 6(1):3:1–3:39. https://doi.org/10.1145/2133360.
2133363

Papadimitriou S, Kitagawa H, Gibbons PB, et al (2003) LOCI: fast out-
lier detection using the local correlation integral. In: Proceedings of the
19th ICDE International Conference on Data Engineering. IEEE Computer
Society, pp 315–326, https://doi.org/10.1109/ICDE.2003.1260802

Parzen E (1962) On estimation of a probability density function and mode.
The annals of mathematical statistics 33(3):1065–1076

Pekalska E, Tax DMJ, Duin RPW (2002) One-class LP classifiers for dis-
similarity representations. In: Proceedings of the 15th NIPS International
Conference on Neural Information Processing Systems, Advances in Neural
Information Processing Systems. MIT Press, pp 761–768

Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining
outliers from large data sets. In: Proceedings of the 2000 SIGMOD Inter-
national Conference on Management of Data. ACM, pp 427–438, https:
//doi.org/10.1145/342009.335437

de Ridder D, Tax DMJ, Duin RPW (1998) An experimental comparison of
one-class classification methods. In: Proceedings of the 4th ASCI Advanced
School for Computing and Imaging, pp 213–218

https://doi.org/10.1145/1150402.1150429
https://doi.org/10.1145/1401890.1401946
https://doi.org/10.1007/978-3-642-01307-2_86
https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1109/ICDE.2003.1260802
https://doi.org/10.1145/342009.335437
https://doi.org/10.1145/342009.335437

On the Evaluation of Outlier Detection and One-Class Classification 13

Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In:
Proceedings of the 1995 SIGMOD International Conference on Management
of Data. ACM Press, pp 71–79, https://doi.org/10.1145/223784.223794

Ruff L, Görnitz N, Deecke L, et al (2018) Deep one-class classification. In: Pro-
ceedings of the 35th ICML International Conference on Machine Learning.
PMLR, pp 4390–4399

Schölkopf B, Platt JC, Shawe-Taylor J, et al (2001) Estimating the support
of a high-dimensional distribution. Neural Comput 13(7):1443–1471. https:
//doi.org/10.1162/089976601750264965

Strang G (2016) Introduction to Linear Algebra, 5th edn. Wellesley-Cambridge
Press

Tax DMJ (2001) One-class classification. PhD thesis, Delft University of
Technology

Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn
54(1):45–66. https://doi.org/10.1023/B:MACH.0000008084.60811.49

Vapni VN (1995) The Nature of Statistical Learning Theory. Springer, https:
//doi.org/10.1007/978-1-4757-2440-0

Webb GI (2011) Lazy learning. In: Sammut C, Webb GI (eds) Encyclope-
dia of Machine Learning. Springer, p 571–572, https://doi.org/10.1007/
978-0-387-30164-8 443

Woodsend K (2009) Using interior point methods for large-scale support vector
machine training. PhD thesis, University of Edinburgh

https://doi.org/10.1145/223784.223794
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1007/978-0-387-30164-8_443
https://doi.org/10.1007/978-0-387-30164-8_443

	Methods and their Properties
	Description of the Methods
	Time Complexity

